
Chapter 6

[ 147 ]

In the above code, we have created an interface named IEncryptionAlgorithm, 
which will abstract the basic properties that every concrete algorithm needs to 
implement. This interface is a kind of a contract which the implementation classes 
need to follow for writing custom encryption methods. We have:

Password: the password/key for each encryption algorithm
RawInput: a byte array which will hold the data that needs to be encrypted
Salt: salt is needed to make sure that our encryption code is harder to crack
Keysize: the bigger the key size, the tougher it is to break the encryption
Encrypt() method: returns the data as a byte array after encrypting it
Decrypt() method: decrypts already-encrypted data back to the  
original data
CheckPassword(): for demonstration purposes, we will be storing the 
password inside the encrypted data instead of some external location. So this 
method will be used before the actual decryption to check if the password 
entered by the user is correct or not.

Step 2: Create an Implementation
We first created an XOR based XOREncryption class, which implemented  
this interface:

public class XOREncryption : IEncryptionAlgorithm

We will implement the encryption and decryption methods along with the 
properties; for detailed code refer the code bundle. Here is the trimmed -0  
down version:

        public byte[] Encrypt()
        {
            byte[] encryptedBytes = new byte[_rawInput.Length];
            byte[] keyBytes = ASCIIEncoding.ASCII.GetBytes(_key);
            //hard coded salt value
            _salt = new byte[] {0x11, 0x78, 0x22, 0xFF, 0xAC, 0x5C, 
                                0x78, 0x4E, 0x7D, 0x45, 0xEF, 0xF1};
                 //rest of the code goes here
        }

We need to complete this class with other methods and properties defined by the 
interface (see the source code provided in the code bundle).

•

•

•

•

•

•

•



Design Patterns

[ 148 ]

Step 3: Create another Implementation
Because we want to switch between multiple algorithmic implementations at 
runtime, we will create one more encryption algorithm implementation so that we 
can see the plug-n-play design in action: 

public class RijndaelEncryption : IEncryptionAlgorithm
{
       //implement IEncryptionAlgorithm properties and methods
}

Now we have two implementations ready, and the question becomes how we 
dynamically instantiate one of these in the GUI.

Step 4: Create a Factory Class
For that, we need to use the Factory design pattern and create a Factory class  
as follows:

    public sealed class AlgorithmFactory
    {
        private AlgorithmFactory()
        { }

        public static IEncryptionAlgorithm GetSpecifiedAlgorithm()
        {
            string algoType = System.Configuration. 
                            ConfigurationSettings.AppSettings["algo"];
            IEncryptionAlgorithm algoInstance;
            if (string.IsNullOrEmpty(algoType))
            {
                goInstance = Activator.CreateInstance(Type.  
                     GetType("NeekProtect.XOREncryption,NeekProtect"))
                     as IEncryptionAlgorithm;
            }
            else
            {
                algoInstance = Activator.CreateInstance(Type. 
                           GetType(algoType)) as IEncryptionAlgorithm;
            }
             return algoInstance;
        }
    }


